Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2304130

ABSTRACT

The development of potent non-nucleoside inhibitors (NNIs) could be an alternate strategy to combating infectious bovine viral diarrhea virus (BVDV), other than the traditional vaccination. RNA-dependent RNA polymerase (RdRp) is an essential enzyme for viral replication; therefore, it is one of the primary targets for countermeasures against infectious diseases. The reported NNIs, belonging to the classes of quinolines (2h: imidazo[4,5-g]quinolines and 5m: pyrido[2,3-g] quinoxalines), displayed activity in cell-based and enzyme-based assays. Nevertheless, the RdRp binding site and microscopic mechanistic action are still elusive, and can be explored at a molecular level. Here, we employed a varied computational arsenal, including conventional and accelerated methods, to identify quinoline compounds' most likely binding sites. Our study revealed A392 and I261 as the mutations that can render RdRp resistant against quinoline compounds. In particular, for ligand 2h, mutation of A392E is the most probable mutation. The loop L1 and linker of the fingertip is recognized as a pivotal structural determinant for the stability and escape of quinoline compounds. Overall, this work demonstrates that the quinoline inhibitors bind at the template entrance channel, which is governed by conformational dynamics of interactions with loops and linker residues, and reveals structural and mechanistic insights into inhibition phenomena, for the discovery of improved antivirals.

2.
Comput Biol Med ; 151(Pt A): 106288, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2104649

ABSTRACT

SARS-CoV-2 Mpro (Mpro) is the critical cysteine protease in coronavirus viral replication. Tea polyphenols are effective Mpro inhibitors. Therefore, we aim to isolate and synthesize more novel tea polyphenols from Zhenghedabai (ZHDB) white tea methanol-water (MW) extracts that might inhibit COVID-19. Through molecular networking, 33 compounds were identified and divided into 5 clusters. Further, natural products molecular network (MN) analysis showed that MN1 has new phenylpropanoid-substituted ester-catechin (PSEC), and MN5 has the important basic compound type hydroxycinnamoylcatechins (HCCs). Thus, a new PSEC (1, PSEC636) was isolated, which can be further detected in 14 green tea samples. A series of HCCs were synthesized (2-6), including three new acetylated HCCs (3-5). Then we used surface plasmon resonance (SPR) to analyze the equilibrium dissociation constants (KD) for the interaction of 12 catechins and Mpro. The KD values of PSEC636 (1), EGC-C (2), and EC-CDA (3) were 2.25, 2.81, and 2.44 µM, respectively. Moreover, compounds 1, 2, and 3 showed the potential Mpro inhibition with IC50 5.95 ± 0.17, 9.09 ± 0.22, and 23.10 ± 0.69 µM, respectively. Further, we used induced fit docking (IFD), binding pose metadynamics (BPMD), and molecular dynamics (MD) to explore the stable binding pose of Mpro-1, showing that 1 could tightly bond with the amino acid residues THR26, HIS41, CYS44, TYR54, GLU166, and ASP187. The computer modeling studies reveal that the ester, acetyl, and pyrogallol groups could improve inhibitory activity. Our research suggests that these catechins are effective Mpro inhibitors, and might be developed as therapeutics against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Catechin , Humans , SARS-CoV-2 , Catechin/pharmacology , Tea , Polyphenols , Esters
3.
J Comput Aided Mol Des ; 36(9): 653-675, 2022 09.
Article in English | MEDLINE | ID: covidwho-2048385

ABSTRACT

Angiotensin-(1-7) re-balance the Renin-Angiotensin system affected during several pathologies, including the new COVID-19; cardiovascular diseases; and cancer. However, one of the limiting factors for its therapeutic use is its short half-life, which might be overcome with the use of dendrimers as nanoprotectors. In this work, we addressed the following issues: (1) the capacity of our computational protocol to reproduce the experimental structural features of the (hydroxyl/amino)-terminated PAMAM dendrimers as well as the Angiotensin-(1-7) peptide; (2) the coupling of Angiotensin-(1-7) to (hydroxyl/amino)-terminated PAMAM dendrimers in order to gain insight into the structural basis of its molecular binding; (3) the capacity of the dendrimers to protect Angiotensin-(1-7); and (4) the effect of pH changes on the peptide binding and covering. Our Molecular-Dynamics/Metadynamics-based computational protocol well modeled the structural experimental features reported in the literature and our double-docking approach was able to provide reasonable initial structures for stable complexes. At neutral pH, PAMAM dendrimers with both terminal types were able to interact stably with 3 Angiotensin-(1-7) peptides through ASP1, TYR4 and PRO7 key amino acids. In general, they bind on the surface in the case of the hydroxyl-terminated compact dendrimer and in the internal zone in the case of the amino-terminated open dendrimer. At acidic pH, PAMAM dendrimers with both terminal groups are still able to interact with peptides either internalized or in its periphery, however, the number of contacts, the percentage of coverage and the number of hydrogen bonds are lesser than at neutral pH, suggesting a state for peptide release. In summary, amino-terminated PAMAM dendrimer showed slightly better features to bind, load and protect Angiotensin-(1-7) peptides.


Subject(s)
COVID-19 , Dendrimers , Amino Acids , Angiotensin I , Dendrimers/chemistry , Humans , Molecular Dynamics Simulation , Peptide Fragments , Peptides
4.
Comput Struct Biotechnol J ; 20: 2309-2321, 2022.
Article in English | MEDLINE | ID: covidwho-1944736

ABSTRACT

Fentanyl and its analogs are selective agonists of the µ-opioid receptor (MOR). Among novel synthetic opioids (NSOs), they dominate the recreational drug market and are the main culprits for the opioid crisis, which has been exacerbated by the COVID-19 pandemic. By taking advantage of the crystal structures of the MOR, several groups have investigated the binding mechanism of fentanyl, but have not reached a consensus, in terms of both the binding orientation and the fentanyl conformation. Thus, the binding mechanism of fentanyl at the MOR remains an unsolved and challenging question. Here, we carried out a systematic computational study to investigate the preferred fentanyl conformations, and how these conformations are being accommodated in the MOR binding pocket. We characterized the free energy landscape of fentanyl conformations with metadynamics simulations, and compared and evaluated several possible fentanyl binding conditions in the MOR with long-timescale molecular dynamics simulations. Our results indicate that the most preferred binding pose in the MOR binding pocket corresponds well with the global minimum on the energy landscape of fentanyl in the absence of the receptor, while the energy landscape can be reconfigured by modifying the fentanyl scaffold. The interactions with the receptor may stabilize a slightly unfavored fentanyl conformation in an alternative binding pose. By extending similar investigations to fentanyl analogs, our findings establish a structure-activity relationship of fentanyl binding at the MOR. In addition to providing a structural basis to understand the potential toxicity of the emerging NSOs, such insights will contribute to developing new, safer analgesics.

5.
J Comput Chem ; 43(18): 1237-1250, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1826007

ABSTRACT

The emergence of pandemic situations originated from severe acute respiratory syndrome (SARS)-CoV-2 and its new variants created worldwide medical emergencies. Due to the non-availability of efficient drugs and vaccines at these emergency hours, repurposing existing drugs can effectively treat patients critically infected by SARS-CoV-2. Finding a suitable repurposing drug with inhibitory efficacy to a host-protein is challenging. A detailed mechanistic understanding of the kinetics, (dis)association pathways, key protein residues facilitating the entry-exit of the drugs with targets are fundamental in selecting these repurposed drugs. Keeping this target as the goal of the paper, the potential repurposing drugs, Nafamostat, Camostat, Silmitasertib, Valproic acid, and Zotatifin with host-proteins HDAC2, CSK22, eIF4E2 are studied to elucidate energetics, kinetics, and dissociation pathways. From an ensemble of independent simulations, we observed the presence of single or multiple dissociation pathways with varying host-proteins-drug systems and quantitatively estimated the probability of unbinding through these specific pathways. We also explored the crucial gateway residues facilitating these dissociation mechanisms. Interestingly, the residues we obtained for HDAC2 and CSK22 are also involved in the catalytic activity. Our results demonstrate how these potential drugs interact with the host machinery and the specific target residues, showing involvement in the mechanism. Most of these drugs are in the preclinical phase, and some are already being used to treat severe COVID-19 patients. Hence, the mechanistic insight presented in this study is envisaged to support further findings of clinical studies and eventually develop efficient inhibitors to treat SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Humans , Pandemics
6.
Molecules ; 26(19)2021 Oct 07.
Article in English | MEDLINE | ID: covidwho-1463771

ABSTRACT

3CL-Pro is the SARS-CoV-2 main protease (MPro). It acts as a homodimer to cleave the large polyprotein 1ab transcript into proteins that are necessary for viral growth and replication. 3CL-Pro has been one of the most studied SARS-CoV-2 proteins and a main target of therapeutics. A number of drug candidates have been reported, including natural products. Here, we employ elaborate computational methods to explore the dimerization of the 3CL-Pro protein, and we formulate a computational context to identify potential inhibitors of this process. We report that fortunellin (acacetin 7-O-neohesperidoside), a natural flavonoid O-glycoside, and its structural analogs are potent inhibitors of 3CL-Pro dimerization, inhibiting viral plaque formation in vitro. We thus propose a novel basis for the search of pharmaceuticals as well as dietary supplements in the fight against SARS-CoV-2 and COVID-19.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Flavonoids/pharmacology , Glycosides/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Coronavirus 3C Proteases/metabolism , Flavonoids/chemistry , Glycosides/chemistry , Humans , Molecular Docking Simulation , Polyphenols/chemistry , Polyphenols/pharmacology , Protease Inhibitors/chemistry , Protein Multimerization/drug effects , SARS-CoV-2/metabolism , Vero Cells
7.
J Mol Model ; 27(8): 221, 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1300483

ABSTRACT

Natural products have served human life as medications for centuries. During the outbreak of COVID-19, a number of naturally derived compounds and extracts have been tested or used as potential remedies against COVID-19. Tetradenia riparia extract is one of the plant extracts that have been deployed and claimed to manage and control COVID-19 by some communities in Tanzania and other African countries. The active compounds isolated from T. riparia are known to possess various biological properties including antimalarial and antiviral. However, the underlying mechanism of the active compounds against SARS-CoV-2 remains unknown. Results in the present work have been interpreted from the view point of computational methods including molecular dynamics, free energy methods, and metadynamics to establish the related mechanism of action. Among the constituents of T. riparia studied, luteolin inhibited viral cell entry and was thermodynamically stable. The title compound exhibit residence time and unbinding kinetics of 68.86 ms and 0.014 /ms, respectively. The findings suggest that luteolin could be potent blocker of SARS-CoV-2 cell entry. The study shades lights towards identification of bioactive constituents from T. riparia against COVID-19, and thus bioassay can be carried out to further validate such observations.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Luteolin/pharmacology , Molecular Dynamics Simulation , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/isolation & purification , Antiviral Agents/metabolism , Binding Sites , COVID-19/virology , Host-Pathogen Interactions , Humans , Kinetics , Lamiaceae/chemistry , Luteolin/isolation & purification , Luteolin/metabolism , Plant Extracts/isolation & purification , Plant Extracts/metabolism , Protein Binding , Protein Conformation , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism
8.
J Biomol Struct Dyn ; : 1-21, 2021 May 10.
Article in English | MEDLINE | ID: covidwho-1221314

ABSTRACT

The main-protease (Mpro) catalyzes a crucial step for the SARS-CoV-2 life cycle. The recent SARS-CoV-2 presents the main protease (MCoV2pro) with 12 mutations compared to SARS-CoV (MCoV1pro). Recent studies point out that these subtle differences lead to mobility variances at the active site loops with functional implications. We use metadynamics simulations and a sort of computational analysis to probe the dynamic, pharmacophoric and catalytic environment differences between the monomers of both enzymes. So, we verify how much intrinsic distinctions are preserved in the functional dimer of MCoV2pro, as well as its implications for ligand accessibility and optimized drug screening. We find a significantly higher accessibility to open binding conformers in the MCoV2pro monomer compared to MCoV1pro. A higher hydration propensity for the MCoV2pro S2 loop with the A46S substitution seems to exercise a key role. Quantum calculations suggest that the wider conformations for MCoV2pro are less catalytically active in the monomer. However, the statistics for contacts involving the N-finger suggest higher maintenance of this activity at the dimer. Docking analyses suggest that the ability to vary the active site width can be important to improve the access of the ligand to the active site in different ways. So, we carry out a multiconformational virtual screening with different ligand bases. The results point to the importance of taking into account the protein conformational multiplicity for new promissors anti MCoV2pro ligands. We hope these results will be useful in prospecting, repurposing and/or designing new anti SARS-CoV-2 drugs.Communicated by Ramaswamy H. Sarma.

9.
Chem Asian J ; 16(12): 1634-1642, 2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1216148

ABSTRACT

Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Design , Drug Repositioning , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Antiviral Agents/chemistry , COVID-19/virology , Computer Simulation , Humans , Models, Molecular , Protein Conformation , Thermodynamics
10.
J Biomol Struct Dyn ; 40(15): 7002-7017, 2022 09.
Article in English | MEDLINE | ID: covidwho-1116948

ABSTRACT

In recent times, computational methods played an important role in the down selection of chemical compounds, which could be a potential drug candidate with a high affinity to target proteins. However, the screening methodologies, including docking, often fails to identify the most effective compound, which could be a ligand for the target protein. To solve that, here we have integrated meta-dynamics, an enhanced sampling molecular simulation method, with all-atom molecular dynamics to determine a specific compound that could target the main protease of novel severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). This combined computational approach uses the enhanced sampling to explore the free energy surface associated with the protein's binding site (including the ligand) in an explicit solvent. We have implemented this method to find new chemical entities that exhibit high specificity of binding to the 3-chymotrypsin-like cysteine protease (3CLpro) present in the SARS-CoV-2 and segregated to the most strongly bound ligands based on free energy and scoring functions (defined and implemented) from a set of 17 ligands which were prescreened for synthesizability and druggability. Additionally, we have compared these 17 ligands' affinities against controls, N3 and 13b α-ketoamide inhibitors, for which experimental crystal structures are available. Based on our results and analysis from the combined molecular simulation approach, we could identify the best compound which could be further taken as a potential candidate for experimental validation.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL